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Abstract. It is pointed out that, in terms of the successive product of a great number of 
transfer matrices, the electron subbands and wavefunctions can be solved consistently for 
type-I or type-I1 semiconductor systems in which the band edges of conduction bands and 
valence bands are not flat (oblique lines or curves). As an illustrative example, we performed 
a self-consistent calculation of electron subbands and wavefunctions of the Ga,+,Al,As 
sawtooth superlattice taking account of the variation in the effective mass of electrons with 
the concentration of Al. 

1. Introduction 

In [l], we derived the transfer matrix suitable for both type-I and type-I1 semiconductor 
multi-layer systems that connect the amplitudes of the wavefunction of the Ith layer to 
that of the ( I  + 11th layer. In terms of the successive product of a series of transfer 
matrices, the electron subbands and wavefunctions of multi-layer systems, such as 
superlattices or quasi-periodic superlattices, can be determined. 

We suggested that this type of method could be generalised to deal with semi- 
conductor systems in which the edges of conduction bands and valence bands are not 
flat (oblique lines or curves). For example, if an electric field is applied along the growth 
axis of a multi-quantum-well system [2], the edges of the conduction bands and valence 
bands of each quantum well decline. We cannot obtain solutions of the two-band 
envelope function equation (equation (1) in B 2 ) ,  even for a single well or barrier, nor 
can all these solutions of wells and barriers be connected to obtain the secular equation 
of the whole system by means of boundary conditions. 

However, if we divide the width of each well and barrier into a large number of 
sublayers, because the width of each sublayer is very small we can consider approximately 
that the energy values of the edges of the conduction bands and valence bands are 
constant within each sublayer but differ from those of their nearest neighbours. So the 
band edges of the whole system could be expressed approximately by a series of flights 
of stairs, each flight of stairs containing a number of flat steps. The envelopes of these 
flights of stairs are simply the real shapes of the band edges. Now it is easy to see that, 
after this type of division, systems in which the band edges are not flat are equivalent 
approximately to multi-sublayer systems. Therefore, in terms of the method presented 
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in [l] the electron subbands and wavefunctions of these systems can be determined. We 
call this type of method the asymptotic transfer method (ATM). 

2. Theory 

For type-I1 semiconductor periodic systems with period D in which the band edges have 
complex shapes. Electron subbands and wavefunctions can be determined from the two- 
band envelope function equation [l]: 

where 

HI,(&) = H 2 2 ( E )  = V,(Z) + l-12K-[Eg + E - V,(z)l-'K+ 

+ $r12K+[Eg + E - v , ( z ) ] - 'K-  + " Y [ E g  + E - v , ( z )] - 'K ,  (2 )  

Hf2(&) = H21(~) = (V2/3)l-12{K,[~, + E - Vp(z)]-'K+ 

- K+[Eg + E - V,(z )] - 'K ,}  

K ,  = (I/v'~)(K, +- i K ~ )  K, = -id/dz. 

(3) 

(4) 

The Kane matrix element 

l-I = (n/m,)(islp, Id. ( 5 )  

E, is the energy gap of this system, V,(z) and V,(z) are the energy values of the band 
edges of conduction band and valence band, respectively, as functions of z ,  and the z 
axis is chosen to lie along the growth axis of the system. 

Now, we divide the width D of the primary cell into j sublayers for instance. If j is 
large enough, the width of each sublayer is very small. Within each sublayer, the Ith 
sublayer for instance, the energies V ; ( z )  and Vb(z)  of the edges of conduction band 
and valence band can be considered as constant: Vi and Vb. So H12(e) = 0 and HZ1(c) = 
0, and equation (1) can be reduced to two separate equations 

(d2/dz2 + a ! ) F [ ( z )  = 0 

(d2/dz2 + a:)Fi(z) = 0 

(6a) 

(6b) 

where 
&2 - - - (3/2r12)(&, + E - V',)(Vs -. E )  - K: (7)  

in which K ,  is the wavevector in the plane perpendicular to the z axis. The solutions of 
equation (6) in the lth sublayer are 

F{(r ,  z )  = {A\ exp[i al(z - z r ) ]  + B: exp[-i a r ( z  - z , ) ] }  exp(i K ,  r) 

Fi(r,  z )  = {Ai exp[iar(z - z , ) ]  + Bi  exp[-i a r ( z  - z l ) ] }  exp(iK, * r)  
(8) 

where r is the two-dimensional coordinate vector in the x - y plane. 
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In terms of the four continuity conditions of wavefunctions in the interface, the 
amplitudes of the wavefunctions of the Ith sublayer can be connected to those of the 
( I  + l)th sublayer via a transfer matrix T, 

where A: ,  etc, are the reduced amplitudes of wavefunctions defined as 

Ai = ( a l / M ' ) 1 / 2 A i  B: = (a,/M')l /2B: etc 

and 

A[+' = (a,+l/M'+1)1/2AF1 1 = ( a1+1 / ~ ' + ' ) l / ~  B'+' 1 etc 

in which 

M' = (eg + E - Vb) (10) 
and the transfer matrix is 

J, exp(ialdl) 8, exp(-ialdl) -RI exp(-ialdl) -RI exp(ialdl) 

8, exp(ialdl) J I  exp( -iald,) RI exp(-iald,) exp(ialdJ 
] ( 1 1 )  

exp(ia,dl) -R; exp(-ialdl) .TI exp(-ia,d,) 8, exp(ialdl) 

R;  exp(ialdl) R;  exp(-ialdl) 8, exp(-iald,) J ,  exp(ialdl) 

where 

J l  = f [ ( a R / M R ) ' 1 2  + ( M R / a R ) 1 / 2 ]  

e, = $ [ ( ( u ~ / M ~ ) ~ / ~  - ( ~ ~ / a ~ ) ~ / 2 ]  
(12) 

(13) 

aR = c ~ , + ~ / a ,  M R  = M'+' / M l .  (14) 

R = $[K+ / ( 2a l  ( Y I +  1 ) ' I 2 ]  [ ( l/MR 
R 

- ( M R )  '''1 
= $ [ K - /( 2 a/+, ) ' I 2 ]  [ (1 / M  R ,  '1' - ( MR ) ' I 2 ]  

and 

In equation (11), dlis the width of the lth sublayer. 
By means of the successive product of j transfer matrices and after introducing the 

Bloch index X ,  we obtain a secular-like equation 
. .  
Ai 

Bj 

B: 

A: 

= O  (15) 
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i 

I=  1 
Mi = n[ T,. 

For type-I systems, such as GaAs-Gal _,AI,As, the interaction between 
duction and valence bands is small because of the large energy gap ( E ~  = 1.5 eV); as a 
result the motion perpendicular to the interfaces of sublayers is hardly affected by the 
motion parallel to the interface. Hence we need only consider the case when K L  = 0. In 
this case, Rl and R;  of equation (11) are equal to zero. T, in equation (11) reduces to 
two disconnected 2 x 2 submatrices, one of which is 

1 J l  exp(iculdl) O r  exp(-iculdl) 

Or exp(icurdi) J I  exp(-iald,) 

and the secular-like equation becomes 

Further, if 

(2JT2/3)(&, + E - VL)-’ = 1/2m7- 

(d2/dz2 + P:)F\(z) = 0 

p: = (2mr*/h2)(& - Vi) 

(19) 

(20) 

(21) 

equation (6a) becomes 

where 

in which mf’ is the effective mass of electrons in the Ith sublayer. 
The transfer matrix in equation (17) reduces to 

The secular-like equation becomes 

where 

Hence, we can see that taking account of the variation in both the conduction band 
and valence band energies V,(z) and V&z) as functions of z at the same time is equivalent 
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approximately to considering the variation in the effective mass of electrons as a function 
of z in each primary cell. 

To solve the problem self-consistently, we must also know the subbands and 
wavefunctions of holes in the valence band. Following [3], when K ,  = 0, the parabolic 
single-band envelope function equation for holes is 

[d2/dZ2 + pl(Z)]F$(Z) = 0 (27) 

where 

p : ( Z )  = 2m:*/h2(& - V’,) 

in which m:’ is the effective mass of holes in the Ith sublayer. Then the corresponding 
transfer matrix for wavefunctions of holes is 

where 

and 

The secular-like equation becomes 

where 

The ATM is suitable for non-period systems too. In this case we can divide the whole 
system into j sublayers and then solve the coupled equations of equation (15) and two 
boundary conditions at both terminations of the system to determine the subbands and 
wavefunctions of electrons. 

As an illustrative example, in this paper we perform a self-consistent calculation of 
electron subbands for the type-I GaAsl-,A1,As sawtooth superlattice. 

3. Electron subbands of sawtooth superlattice 

In [4] is presented a quantum mechanics theory to calculate the electron subbands of 
GaAs-Gal -,Al,As sawtooth superlattice in which the A1 concentrationx is proportional 
to the coordinate z within each period D, resulting in a sawtooth shape of both the 
conduction band and the valence band. At the end of each D the energies of the 



7340 Guoyi Qin 

Figure 1. (a)Thesketchof thestructure of the bandedgesof the GaAs-Ga,-.AI,Assawtooth 
superlattice. ( b )  In ATM, the real band edge of a primary cell of sawtooth superlattice is 
replaced by a flight of stairs containing j flat plateaus. The larger j ,  the more accurate are the 
results of ATM. In this figure we take j  = 18 as an illustrative example. 

conduction band and valence band have the extreme values shown in figure l(a). 
The same problem will again be discussed here as an illustrative example of ATM. In 
comparison with the results in [4] the ATM results have improved in three ways. 

(i) The variations in both the conduction band edge and the valence band edge are 
taken into account. As we have discussed above, this is equivalent approximately to 
taking account of the variation in effective mass of electrons as function of z in each 
period. 

(ii) ATM can determine the electron subbands self-consistently but the method of 
ordinary quantum mechanics cannot. 

(iii) The variation in effective mass of holes with the concentration of A1 in each 
period can be considered by ATM, but it cannot be considered by the method in [4]. 

The primary cell of this system has width D .  We divide each primary cell of the 
sawtooth superlattice into j sublayers, as shown in figure l (b ) .  Because j is a larger 
number, within any sublayer (the Ith sublayer for instance), V,(z) and V,(z> can be 
considered approximately as constant, i.e. Vs ( z )  = Vi and Vb ( z )  = VL. 

According to the formula given in [5]  

E ~ ( x )  = 1519.2 + 1 2 4 7 ~  (mev) (34) 

where x is the concentration of A1 in Gal_,A1,As. And the band offsets used are 
60% and 40% of the band-gap difference between the conduction and valence bands, 
respectively. If we take x = 0.2, the extreme energy values of the conduction band and 
valence band in each primary cell are 

Vmax = 249.4 X 60% = 149.64 (mev) 
VFin = -249.4 X 40% = -99.76 (mev).  

(35) 

To compare our results with those in [4] to check the accuracy of ATM, we put mp' 
equal to a constant first: 

my* = 0.067mo (36) 
where mo is the mass of free electrons. 

The band edge of the conduction band in the Ith sublayer is 

V',(z)  = Vi = 149.64[(1 - l ) / j ] .  (37) 
If we put equations (36) and (37) into the single-band envelope function equation 
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Figure 2. (a) A plot of subband energies 
and band widths for electrons as a function 
of the period in a sawtooth superlattice 
calculated by ATM (the parameters are 
me' = 0.067 mo, x = 0.2, j = 100, j = 200 
for broken curves and for full curves). (6) 
A plot of subband energies and bandwidth 
for heavy holes as a function of the period 
in sawtooth superlattice calculated by ATM. 
The parameters are mh' = 0.45mo, x = 0.2 
and j  = 200. 

for electrons (equations (20) and (21)), then using equations (22)-(26) the subbands 
and wavefunctions of electrons in the sawtooth superlattice can be determined. The 
results for electron subbands are shown in figure 2(a).  The broken curves are obtained 
from the calculation in which the number of sublayers in each primary cell is j = 100, 
and the full curves are obtained from the calculation in which j = 200. The full curves 
nearly reproduce the results of the analytic method in [4]. The energy difference between 
results (the full curves in figure 2(a))  and those in [4] is less than 0.3 meV for the ground 
sub-band in the region from D = 140 8, to D = 250 8,. 

In the same way, if we take the effective mass of heavy holes as constant, i.e. 

m:'" = 0.45mo (38) 

V',(z) = Vb = -99.76[(1- l)/j]. (39) 

the band edge of the valence band is given by 

If we put equations (38) and (39) into equations (28)-(33), the subbands and 
wavefunctions of heavy holes can be determined. The results are shown in figure 
2(b) .  The parameters taken now are j = 200. The results plotted in figure 2(b) also 
approximately reproduce the results in [4], especially for the ground subband of heavy 
holes. All the results given above prove that ATM is a good approximation of the rigorous 
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analytical method when the gradients of the band edges as function of z are not too 
large. The accuracy depends on the parameter 

A = L/w (40) 

where L is the energy leap between neighbouring sublayers and w is the width of each 
sublayer. The smaller d ,  the more accurate are the results of ATM. In our calculation, we 
chose the numberj to give A = 1 meV kl, It seems that this is sufficient for our purpose. 

Then, we take the variation in both the conduction band and the valence band into 
account. As we have discussed in 0 2, for type-I semiconductor systems, this is equivalent 
approximately to taking account of the variation in the effective mass of electrons. 
According to equation (35), in the Ith sublayer 

Vi = 149.64[(1- l)/j] 

V i  -99.76[(1- l)/j] 

and we take the Kane matrix element of GaAs to be 

I7 = (h/m,)(iSlpz lz) = 1.076 x (meV cm). (42) 

By substitution of equations (41) and (42) into equations (16) and (18), the sub- 
bands and wavefunctions of electrons taking account of the variation in effective mass 
are obtained. 

For heavy holes, if we take account of its effective mass as a function of z. According 
to the formula given in [3] 

mh'(x) = [mh*(GaAs) + 0.31x]mo. (43) 

When we take x = 0.2 amd mh*(GaAs) = 0.45, the effective mass of heavy holes in 
the Zth sublayer is 

m:* = (0.45 + 0.062[(1- l)/j]}mo. (44) 

Now, V',(z) satisfies equation (39) still; so, if we substitute equations (39) and (44) 
into equations (28)-(33), the subbands and wavefunctions for heavy holes are deter- 
mined by taking account of the variation in the effective mass of heavy holes as a function 
of 2 .  

The wavefunctions of electrons and heavy holes obtained display obvious localised 
properties. Therefore, in addition to the potential of sawtooth shape, the redistribution 
of charge carriers will produce a self-consistent potential. We consider that the system 
is in the electric quantum limit, i.e. only the ground conduction and valence subbands 
are occupied. So the self-consistent potential is determined from the Poisson equation 

dV,(z)/dz* = - 4ne2NS/~ , [ /Y~(z )1*  - IY:(Z)~~] (45) 

where N, is the area density of electrons or holes Yz(z) and Yg(z) are the ground 
wavefunctions of electrons and holes, respectively, and E, is the dielectric constant of 
Gal -,Al,As. 

In our calculation, we neglect the small overlap between the wavefunctions of a 
primary cell and that of its nearest neighbours. 
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Table 1. Results for the subbands of electrons. E is the energy of the band edge, D is the 
width of the period and Yi is the Bloch wavevector. ATM is defined in the text, QMM is the 
quantum mechanics method and SCTBM is the self-consistent two-band method. 

State 

E (mev) 

D = 140 A D = 210 A 
ATM (SCTBM) QMM rc ATM(SCTBM) QMM 

~~ 

Ground subband 0 61.8201 64.5040 51.1030 55.2795 
Ground subband iz 70.1731 75,9940 52.1030 56.9035 

First excitation subband iz 116.7621 178.9300 97.3571 102.0937 
First excitation subband 0 150.7021 203.5730 106.61 11 115.9878 

Solving equation (4.9, we can obtain the self-consistent potential in a primary cell 
for electrons and holes: 

and 

V”,(Z> = - Vh(2). (47) 

Here, for convenience of calculation, we have moved the origin of the nth primary cell 
to the minimum point 2, of the ground wavefunction of electrons that was obtained in 
the non-self-consistent calculation, as shown in figure l ( a ) .  

The total potentials for electrons and holes are 

VS,”(z) = V,(Z) + V&(Z) (48) 
and 

Vs,C(z) = V,(Z) + VfI(2). (49) 
Next we calculate the VF(z)  and V;(z)  in each sublayer and consider them as 

constants again within each sublayer. If we put them into equations (16) and (18) and 
repeat all the calculations above, we obtain the self-consistent results for subbands and 
wavefunctions. 

The parameters taken for numerical calculations are D = 210 A, j = 200, E, = 14 and 
N, = 0.5 x 1011cm-2. 

Because the effect of the redistribution of electrons and holes cancel each other, the 
self-consistent potential is small and so the modifications of subbands and wavefunctions 
in the self-consistent calculation is small; we stop the calculation after the first cycle of 
self-consistent calculations. 

The results for the wavefunctions for both electrons and heavy holes are shown in 
figure 3. The corresponding results for subbands of electrons are listed in table 1 for 
comparison with the results in [4]. 

We can see from table 1 that not only are the energy values of the subbands of 
electrons in our results lower than those in [4], but also the widths of electron subbands 
are obviously smaller than those in [4]. For example, when D = 210 h;, the width of the 
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Figure 3. A plot of the moduli of wavefunctions of electrons ((a) first excitation subband; 
(b )  ground subband) and heavy holes ((c) ground subband; (d )  first excitation subband; ( e )  
second excitation subband) as functions of the coordinate z inside a primary cell calculated 
by ATM. The parameters are D = 2lOA, x = 0.2, j = 200, E, = 14, N ,  = 0.5 X 10" cm-*. In 
( a )  the curve that has two nodes corresponds to YE = 0, E = 106.6111 meV and the other 
curve to YC = n, E = 97.3571 meV. In ( b )  the curve that has no node corresponds to the band 
edge with YL = 0, E = 51.1030 meV, and the other curve to YC = n, E = 52.1030 meV. In (c) 
the energies of the band edges are E = 23.2777 meV (YC = 0) and E = 23.2781 meV 
(SL = n), respectively. Because the band width is very small, the wavefunctions that cor- 
respond to the band edges are hard to distinguish from each other. In (d )  the curve that has 
one node corresponds to the band edge with YE = n, E = 44.0501 meV, and the other curve 
to SL = 0, E = 44.0682 meV. In ( e )  the curve that has two nodes corresponds to the band 
edge with SE = 0, E = 60.7700 meV and the other curve to YE = n, E = 61.0280 meV. 

groundsubbandand first excitationsubbandare 1.000meVand9.254meV, respectively, 
in our results, but they are 1.624 meV and 13.8941 meV, respectively, in the results in 
[4]. To judge from the results of the more rigorous theory [6], our results are better than 
those in [4]. 
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The ATM presented in this paper is universal and versatile and is suitable for dealing 
with both type-I and type-I1 semiconductor systems in which the band edges have a 
complex shape. The only limit is simply the limit for the envelope function approxi- 
mation, i.e. the variation in the envelope function must not be too fast. This limit is 
equivalent to the fact that A defined in equation (40) must not be too large. In our 
calculation we chose j = 200 to make A = 1 meV A-'. Our results show that this gives 
enough accuracy for the discussion in this paper. Moreover, the wavefunctions obtained 
in the self-consistent calculation vary very slowly as a function of 2. 

Work on another calculation of type-I1 semiconductor multi-quantum-well systems 
[2] is under way, and we have started to investigate the elecronic states of the InAs 
quantum well buried a few tens of nanometres below a GaSb surface [7] in terms of ATM. 

Midway through our calculation, we noticed the work in [8] which was the same idea 
as ours and gives a calculation of the bound states of a parabolic well. 
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